Ressourcenschonendes Quantencomputing: Berechnung mit Quantenlicht wird kompakter

19.04.2024

Eine internationale Kollaboration unter der Leitung von Philip Walther von der Universität Wien hat einen bedeutenden Durchbruch in der Quantentechnologie erzielt. | Neue Publikation in "Science Advances".

Die Interferenz zwischen Photonen, ein grundlegendes Phänomen in der Quantenoptik, dient als Eckpfeiler des optischen Quantencomputings. Dabei geht es darum, die Eigenschaften des Lichts, wie z. B. seinen Welle-Teilchen-Dualismus, nutzbar zu machen, um Interferenzmuster zu induzieren und so die Kodierung und Verarbeitung von Quanteninformation zu ermöglichen.

In traditionellen Multi-Photonen-Experimenten wird üblicherweise das sogenannte spatial encoding verwendet, bei dem Photonen in getrennten Pfaden manipuliert werden, um Interferenzen zu zeigen. Diese Experimente erfordern komplizierte Aufbauten mit zahlreichen Komponenten, was sie resourcenintensiv und nur schlecht skalierbar macht. Das internationale Team, bestehend aus Wissenschafter*nnen der Universität Wien, des Politecnico di Milano und der Université libre de Bruxelles, entschied sich dagegen für einen Ansatz, der auf temporaler Kodierung basiert. Diese Technik manipuliert das zeitliche Auftreten der Photonen und nicht ihre räumliche Statistik. Um diesen Ansatz zu realisieren, entwickelten sie am Christian-Doppler-Labor der Universität Wien eine innovative Architektur, die einen "Looping" aus einer Glasfaser nutzt (Abb.1). Dieses Design ermöglicht die Verwendung derselben optischen Komponenten für alle Photonen und damit auch eine effiziente Multiphotoneninterferenz mit minimalen optischen Komponenten.

Erstautor Lorenzo Carosini von der Universität Wien erklärt: "In unserem Experiment haben wir Quanteninterferenz zwischen bis zu acht Photonen beobachtet, was den Umfang der meisten existierenden Experimente übertrifft. Dank der Vielseitigkeit unseres Ansatzes kann sogar das Muster, wie die Interferenz erzeugt wird, neu konfiguriert sowie die Größe des Experiments skaliert werden, ohne den optischen Aufbau zu ändern."

Die Ergebnisse zeigen die signifikante Verbesserung der Ressourcennutzung im Versuchsaufbau im Vergleich zu traditionellen räumlichen Kodierungsansätzen und ebnen den Weg für zugänglichere und skalierbarere Quantentechnologien.

Originalpublikation: L. Carosini, V. Oddi, F. Giorgino, L. M. Hansen, B. Seron, S. Piacentini, T. Guggemos, I. Agresti, J. C. Loredo, and P. Walther. Programmable multi-photon quantum interference in a single spatial mode. Science Avances.
DOI: 10.1126/sciadv.adj0993

Ressourceneffizienter Multi-Photonen-Prozessor auf Basis eines Loopings mit einer Glasfaser. (© Marco Di Vita)