Radek Zbořil (Czech Republic): Carbon Nanostructures for Biomedical, Environmental, Magnetic and Catalytic Applications

Dienstag, 09. Jänner 2018 17:30

Ort: Lise-Meitner-Hörsaal, Strudlhofgasse 4, 1. Stock

Low-dimensional carbon nanostructures create a quite unique world of diverse allotropes (fullerenes, carbon dots, CNTs, graphene, nanodiamonds etc.), and their derivatives and hybrids can be prepared by approaches of both covalent and non-covalent chemistry [1]. In the present talk, the strategies towards various kinds of photoluminescent (PL) 0D-carbon dots (CDs) and 2D-graphene derivatives will be demonstrated. A quite complex issue of the PL origin in CDs will be discussed and selected applications involving tailored cell labeling, in vivo bioimaging or intracellular temperature sensing highlighted [2]. The broad and miscellaneous family of graphene derivatives will be introduced through examples of 2D-materials developed at our institute. Thus, the syntheses, properties and applications of fluorographene, thiographene, cyanographene and graphene acid will be described [3]. Specific attention will be devoted to controllable chemistry of fluorographene towards the first room-temperature non-metallic magnets, and to the development of strong organic magnets via nitrogen and sulfur doping in the graphene lattice [4]. Finally, non-covalent hybrids of graphene derivatives with CNTs, magnetic nanoparticles, MOF species or noble metal core-shell nanosystems will be discussed with respect to their use in e.g. biomedicine, separation and environmental technologies, catalysis, and ink print jet technologies [5].

References:
1) a) Georgakilas V., Zboril R. et al. Chem. Rev. 2012, 112, 6156-6214. b) Georgakilas V., Zboril R. et al. Chem. Rev. 2015, 115, 4744-4822. c) Georgakilas V., Zboril R. et al. Chem. Rev. 2016, 116, 5464-5519.
2) a) Hola K., Zboril R. et al. Nano Today 2014, 9, 590-603. b) Bourlinos A., Zboril R. et al. Chem. Mater. 2012, 24, 6-8. c) Kalytchuk S., Zboril R. et al. ACS Nano 2017, 11, 1432-1442. d) Holá K, Zboril R. ACS Nano 2017, DOI: 10.1021/acsnano.7b06399.
3) a) Zboril R. et al. Small 2010, 6, 2885-2891. b) Urbanova V.; Zboril R. et al. Adv. Mater. 2015, 27, 2305-2310. c) Bakandritsos, A.; Zboril, R. et al. ACS Nano 2017, 11, 2982-2991.
4) a) Tucek, J.; Zboril, R. et al. Nat. Comm. 2017, 8, 14525. b) Tucek J., Zboril R. et al. Adv. Mater. 2016, 28, 5045–5053. c) Blonski, P.; Zboril, R. et al. J. Am. Chem. Soc. 2017, 139, 3171-3180.
5) a) Tucek, J.; Zboril R. et al. Nat. Comm. 2016, 7, 12879. b) Jayaramulu, K.; Zboril, R.; Fischer, R.A. et al. Adv. Mater. 2017, 29, 1605307. c) Jayaramulu, K., Zboril, R.; Fischer, R. A. et al. Angew. Chem. 2016, 55, 1178-1182. d) Georgakilas V., Zboril R. et al. Adv. Funct. Mater. 2015, 25, 1481-1487.

Location:

Lise-Meitner-Hörsaal, Strudlhofgasse 4, 1. Stock